Chapter 3

Topology of metric spaces

3.1 Open and closed ball

Definition 3.1.1. (Open and closed ball). Let (X, d) be a metric space. We define the open ball of radius r > 0 centered at point $a \in X$ to be the set

$$B_r(a) := \{ x \in X | d(x, a) < r \}$$

The closed ball of radius r > 0 centered at point $a \in X$ is the set

$$\bar{B}_r(a) := \{ x \in X | d(x, a) \le r \}$$

Example 3.1.2. Let $X = \mathbb{R}$ with the standard metric d(x, y) = |x - y|. Then the open ball coincides with an open interval in \mathbb{R} ,

$$B_r(a) = \{ x \in \mathbb{R} | |x - a| < r \} = (a - r, a + r).$$

The closed ball is a closed interval in \mathbb{R} ,

$$\bar{B}_r(a) = \{x \in \mathbb{R} | |x - a| \le r\} = [a - r, a + r].$$

Example 3.1.3. Let $X = \mathbb{R}^2$ and a = 0. Then:

1. open ball in the Euclidean metric d_2 is the open disc

$$B_r^{d_2}(0) = \{ x \in \mathbb{R}^2 | d_2(x, 0) < r \} = \{ x \in \mathbb{R}^2 | x_1^2 + x_2^2 < r^2 \}.$$

2. open ball in the taxi cab metric d_1 is an open diamond

$$B_r^{d_1}(0) = \{ x \in \mathbb{R}^2 | d_1(x, 0) < r \} = \{ x \in \mathbb{R}^2 | |x_1| + |x_2| < r \}.$$

3. open ball in the ∞ -metric d_{∞} is an open square

$$B_r^{d_{\infty}}(0) = \{ x \in \mathbb{R}^2 | d_{\infty}(x,0) < r \} = \{ x \in \mathbb{R}^2 | \max\{|x_1|, |x_2| < r \}.$$

Definition 3.1.4. (Interior, exterior, boundary). Let (X, d) be a metric space and $E \subset X$ a subset of X. We say $x \in E$ is an interior point of the set E if

$$\exists \epsilon > 0 : B_{\epsilon}(x) \subset E, \qquad i.e. \quad B_{\epsilon}(x) \cap E^{c} = \emptyset.$$

We say $x \in X$ is an exterior point of the set E if

$$\exists \epsilon > 0 : B_{\epsilon}(x) \cap E = \emptyset, \qquad i.e. \quad B_{\epsilon}(x) \subset E^{c}.$$

We say $x \in X$ is a boundary point of the set E if x is neither an interior point nor an exterior point of E.

Example 3.1.5. Prove that x is a boundary point of the set $E \subset X$ if and only if

$$\forall \epsilon > 0 : B_{\epsilon}(x) \cap E \neq \emptyset \qquad \text{and} \qquad B_{\epsilon}(x) \cap E^{c} \neq \emptyset$$

where $E^c = X \setminus E$ denotes the complement of E in X.

The set of all interior points of E is called the interior of E and is denoted int(E)

The set of all exterior points of E is called the exterior of E and is denoted

ext(E)

The set of 6 all boundary points of E is called the boundary of E and is denoted ∂E

Example Prove that $ext(E) = int(E^c)$, $int(E) = ext(E^c)$ and $\partial E = \partial(E^c)$.

Example 3.1.6. Let $X = \mathbb{R}$ with the standard metric d(x, y) = |x - y|and $E = \mathbb{Q}$, the set of all rational numbers. Since $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$ and every interval in \mathbb{R} contains both rational and irrational numbers, we conclude that $\operatorname{int}(\mathbb{Q}) = \emptyset$, $\partial \mathbb{Q} = \mathbb{R}$ and $\operatorname{ext}(\mathbb{Q}) = \emptyset$.

Remark 3.1.7. Every point $x \in X$ is either interior, or exterior, or boundary point of E. In other words,

$$X = \operatorname{int}(E) \cup \partial E \cup \operatorname{ext}(E)$$

Observe that

 $\operatorname{int}(E) \subset E$ and $\operatorname{ext}(E) \subset E^c$

However, if $x \in \partial E$ then x could be an element of E, but it also could be an element of the complement E^c .

Example 3.1.8. Let $X = \mathbb{R}$ with the standard metric d(x, y) = |x - y|. Consider half open interval [1, 2). Then $int(E) = (1, 2), ext(E) = (-\infty, 1) \cup (2, +\infty)$ and $\partial E = \{1, 2\}$.

Definition 3.1.9. (Open and closed set). Let (X, d) be a metric space and $E \subset X$ a subset of X. We say E is open if it contains none of its boundary points, i.e.

$$\partial E \cap E = \emptyset.$$

We say E is closed if it contains all of its boundary points, i.e.

 $\partial E \subset E$

If E contains some of its boundary points but no others then E is neither open nor closed.

Remark 3.1.10. A set E is open if and only if it contains only interior points, i.e.

$$E = \operatorname{int}(E) \tag{3.1}$$

In other words, E is open if and only if for every $x \in E$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset E$. A set F is closed if and only if it contains all interior and boundary points, i.e.

$$F = \operatorname{int}(F) \cup \partial F$$

Note that each of the sets int(F) and ∂F might be empty.

Example 3.1.11. Let $X = \mathbb{R}$ with the standard metric d(x - y) = |x - y|. (1) The set (1, 2) does not contain its boundary points 1, 2 and hence it's open.

(2) The set [1, 2] contains both of its boundary points and hence it's closed.

(3) The set [1, 2) contains one of its boundary points 1 but does not contain the other boundary point 2, so it's neither open nor closed.

Example 3.1.12. Let $X = \mathbb{R}^2$ with the standard Euclidean metric $d_2(x, y)$.

(1) The set $(0,1) \times (0,1)$ does not contain any boundary points and hence it's open. $(\partial E \nsubseteq E)$

(2) The set $[0,1] \times [0,1]$ contains all of its boundary points and hence it's closed. $(\partial F \subset F)$

(3) The set $G = (0,1) \times [0,1]$ contains some but not all of its boundary points and hence it's neither open nor closed. $(\partial G \cap G \neq \emptyset, \partial G \cap G^c \neq \emptyset)$

Example 3.1.13. Let (X, d) be a metric space. Every open ball $B_r(a)$ is an open set in X.

Example 3.1.14. Let (X, d) be a metric space and $a \in X$ a point in X. Then the singleton set $\{a\}$ is closed.

Example 3.1.15. Let (X, d) be a discrete metric space. Prove that any subset from X is open and closed.

Proposition 3.1.16. Let (X, d) be a metric space

- 1. \emptyset and X are open sets in (X, d).
- 2. The union of any finite, countable, uncountable family of open sets is open.
- 3. The intersection of any finite family of open sets is open.

Remark 3.1.17. By taking complements we conclude that:

- 1. X and \emptyset are closed (so X and \emptyset are both open and closed at the same time).
- 2. The finite union of closed sets is closed.
- 3. The arbitrary intersection of closed sets is closed.

Example 3.1.18. The intersection of an infinite collection of open sets may be not be open.